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Fig. 1. Equal-time (5min) comparison of rendering a scene containing a thin high-albedo heterogeneous fog (Jungle) using our volume sca�ering probability

guiding (VSPG) framework (Ours) against standard delta tracking (Baseline). The corresponding volume sca�ering probability (VSP) is visualized on the

right, where brighter regions indicate higher probability. In this example, delta tracking does not generate enough volume samples (top right), resulting in a

high variance in the volume contribution estimate, while VSPG automatically identifies the importance and variance of the volume contribution estimator

and, therefore, increases the volume sca�er probability (bo�om right), leading to a significant noise reduction (inset center).

Simulating the light transport of volumetric e�ects poses signi�cant chal-
lenges and costs, especially in the presence of heterogeneous volumes. Gen-
erating stochastic paths for volume rendering involves multiple decisions,
and previous works mainly focused on directional and distance sampling,
where the volume scattering probability (VSP), i.e., the probability of scat-
tering inside a volume, is indirectly determined as a byproduct of distance
sampling. We demonstrate that direct control over the VSP can signi�cantly
improve e�ciency and present an unbiased volume rendering algorithm
based on an existing resampling framework for precise control over the VSP.
Compared to previous state-of-the-art, which can only increase the VSP
without guaranteeing to reach the desired value, our method also supports
decreasing the VSP. We further present a data-driven guiding framework
to e�ciently learn and query an approximation of the optimal VSP every-
where in the scene without the need for user control. Our approach can
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easily be combined with existing path-guiding methods for directional sam-
pling at minimal overhead and shows signi�cant improvements over the
state-of-the-art in various complex volumetric lighting scenarios.
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1 INTRODUCTION

Stochastic sampling methods of light paths, like path tracing, are the
dominant techniques used in o�ine rendering. However, rendering
complex media like clouds, fog, or smoke in high �delity presents
major challenges. These methods need to simulate numerous scat-
tering events within these heterogeneous volumes, which can lead
to either high computation costs or high-frequency noise due to
variance in the pixel estimates. One e�ective remedy is importance
sampling, which improves sampling of the various decisions encoun-
tered during path construction by placing samples proportional to
the integrand. Prior work focuses mainly on directional sampling,
which determines continuation directions after scattering events,
and distance sampling, which determines locations of these events
along rays inside volumes. However, the volume scattering prob-

ability (VSP), which determines the probability of any scattering
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occurring along the ray within a volume, has often been overlooked
and treated as a secondary aspect of distance sampling.

This work proposes a framework for independent control of the
VSP, setting it apart from most previous work. Speci�cally, we
present a data-driven framework to e�ectively learn and query ap-
proximate optimal VSPs, and a distance sampling algorithm, based
on insights on delta tracking and its connection to resampling pro-
vided by Wrenninge and Villemin [2020], to sample according to
those learned VSPs. As a motivational example, consider Fig. 1 de-
picting an optically thin high-albedo heterogeneous fog in a jungle.
Traditional distance sampling methods, such as delta tracking [Cole-
man 1968; Woodcock et al. 1965], implicitly set the VSP solely based
on the local volume properties and overlook the illumination in
the scene. This leads to a low VSP across this scene, and the thin
fog gets under-sampled. By contrast, our approach signi�cantly
reduces variance by considering the illumination when setting the
VSP, which, in this case, leads to more paths scattering within the
volume.

We propose a data-driven framework that guides the VSP through-
out the scene based on cached information about the scene’s illumi-
nation. This is a form of path guiding as it optimizes path sampling
by steering paths towards areas of higher importance based on con-
tinuously re�ned estimates of the light transport quantities. In our
framework, we derive the spatio-directional varying optimal VSP
and determine the essential quantities needed for e�ective guidance.
We cache the light transport estimates in a screen-space bu�er for
primary rays and a spatio-directional data structure for secondary
rays for e�cient learning and querying. Additionally, our method
can easily be combined with existing state-of-the-art path guiding
methods for directional sampling at minimal overhead.

In summary, our contribution is as follows:

• Derivations of the provably optimal VSP based on certain
assumptions about the underlying estimators (Sec. 5.1).
• A path guiding framework to learn and e�ciently access
the optimal spatio-directional varying VSP during rendering
(Sec. 7).
• An unbiased distance sampling method allowing us to control
the VSP precisely. Our method thereby utilizes the insight
by Wrenninge and Villemin [2020] that delta tracking can be
re-interpreted as a resampling process (Sec. 5.3).
• We demonstrate how our VSP guiding approach can be com-
bined with directional path guiding to improve rendering
quality over the state-of-the-art (Sec. 8).

2 RELATED WORK

Simulating volumetric light or particle transport is a well-researched
topic in the rendering and neutron transport communities. In the
context of rendering, the high-dimensional volume rendering equa-
tion (Eq. 1) is solved using extended versions of the Monte Carlo-
based path tracing algorithm [Kajiya 1986]. In this section, we sum-
marize the related areas of previous works and refer interested
readers to the in-depth report by Novak et al. [2018].

Traditional Distance Sampling. For simple volumes, such as ho-
mogeneous ones, the transmittance component can be importance

sampled analytically. For piecewise constant volumes, regular track-
ing [Leppänen 2010] iteratively samples each constant interval of
the volume analytically, but becomes ine�cient in high-frequency
volumes. Alternatively, ray marching [Danskin and Hanrahan 1992;
Perlin and Ho�ert 1989] marches through the volume at �xed-size
steps, but introduces bias.

Null-collision algorithms, such as delta tracking [Coleman 1968;
Woodcock et al. 1965] which we discuss in more detail in Sec. 3.3.1,
allow for both e�cient and unbiased importance sampling of the
transmittance of heterogeneous volumes by homogenizing them
with �ctitious particles. Galtier et al. [2013] presented a formula-
tion of null-collision algorithms using the integral formulation of
the radiative transfer equation (RTE) [Chandrasekhar 1960]. This
formulation enabled the design of several weighted delta tracking
algorithms (e.g., [Kutz et al. 2017; Szirmay-Kalos et al. 2017, 2018])
that sample distances with PDFs that are not necessarily propor-
tional to transmittance. The framework from Miller et al. [2019]
enables delta tracking to be combined with other methods using
Multiple Importance Sampling (MIS) [Veach and Guibas 1995].

Transmittance Estimation. Explicit transmittance estimation is
needed when the light attenuation due to participating media be-
tween two points must be computed, as is the case when explicitly
sampling light sources with next-event estimation.

While an analytic solution is available for homogeneous volumes,
delta tracking can be applied as an unbiased binary transmittance
estimator for heterogeneous volumes. Ratio tracking [Novák et al.
2014] reduces the variance due to the probabilistic termination
in delta tracking by weighting the samples by the probability of
continuing the walk. Residual ratio tracking [Novák et al. 2014]
combines ratio tracking with a control variate to reduce variance
further. The next �ight estimator [Kutz et al. 2017] sums up the
uncollided transport through the majorant medium at each random
walk position. Recent methods [Georgiev et al. 2019; Kettunen et al.
2021] utilize Taylor expansion to build an unbiased transmittance
estimator that randomly selects locations along the ray instead of
null-scattering random walks.

Specialized Distance Sampling. While traditional distance sam-
pling techniques importance sample the transmittance term, more
sophisticated and specialized methods aim at enhancing distance
sampling by incorporating geometrical or illumination-dependent
terms into the sampling procedure.
The equiangular sampling technique introduced by Kulla and

Fajardo [2012] proposes a specialized estimator for single-scattered
direct light contributions such as point, spot, or area light sources.

The joint-importance sampling framework byGeorgiev et al. [2013]
extends the concept to double scattering, including the phase func-
tion, and Hanika et al. [2022] improves it by alleviating the need of a
tabulated representation of the phase function. Körner et al. [2016]
utilizes the joint-importance sampling framework to enable single-
scattered next-event estimation through refractive surfaces.
The resampling method from Wrenninge and Villemin [2020]

underpins our method and was originally proposed for importance
sampling of the product between direct illumination and the trans-
mittance. They generate candidate samples using delta tracking and
resample according to weights proportional to the product. The key
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di�erence to our work is their focus on the distance sampling within
the volume, while our work focuses on the VSP (Sec. 5.4).
Huang et al. [2021] propose another related resampling-based

approach to importance sample emissive volumes. Similar to our
work, they propose a data-driven approach, but its large overhead
limits its use to primary rays only.

Data-driven Importance Sampling for Volumes. Data-driven im-
portance sampling approaches, such as path guiding, use approxima-
tions of a scene’s light transport, learned in a pre-processing step or
online during rendering, to optimize sampling decisions. The earlier
works by Pegoraro et al. [2008] and Bashford-Rogers et al. [2012]
on volumetric path guiding focused on importance sampling direc-
tional sampling decisions based on learned approximation of the
incoming radiance distribution, but were limited to (near) isotropic
volumes. More general is the approach of Herholz et al. [2019] as
it considers the product with the phase function, as well as the
additional volumetric sampling decisions such as distance sampling,
Russian roulette, and splitting, all based on the zero-variance the-
ory [Hoogenboom 2008]. While the distance sampling proposed in
their work implicitly yields similar optimal VSPs as our work, their
method incurs a large overhead since it relies on regular tracking.
Relevant to our work are directional path-guiding methods that use
spatio-directional data structures to cache approximations of the
incident radiance distribution. The methods of Müller et al. [2017]
and Ruppert et al. [2020] use adaptive KD-trees to store incident ra-
diance models per spatial voxel region. Ruppert et al. [2020] robustly
�ts the directional distributions for each leaf node using parametric
mixture models. Our work extends this representation by adding
the required quantities to estimate the optimal volume scattering
probability per location for each lobe of the mixture models (Sec. 7).

Volume Scattering Probability. Closest related to our work is the
method by Villemin et al. [2018] that modi�es the distance sampling
PDF to increase the volume scatter probability to render thin media
more e�ectively. The method, however, requires the user to set the
VSP per scene or volume manually, and in heterogeneous volumes,
it does not always reach the desired VSP while also not supporting
decreasing the VSP. In contrast, our approach is fully automatic
and adapts to local illumination, always reaches the approximate
optimal VSP anywhere in the scene and allows to also decrease the
VSP. We discuss the di�erences in more detail in Sec. 8.5.

3 BACKGROUND

In this section, we recap the fundamentals of volume rendering rele-
vant to our presented work, such as the volume rendering equation
(Sec. 3.1), volumetric path tracing (Sec. 3.2), common transmittance-
based distance sampling (Sec. 3.3.1) and transmittance estimation
(Sec. 3.3.2). Experienced readers may skip to Sec. 4.

3.1 Volume Rendering Equation

Rendering scenes containing volumes requires solving the Volume
Rendering Equation (VRE). In its integral formulation, the VRE
decomposes the incident radiance Ĉ arriving at a point x from a

Ĉ(x, Ĉ)

Ī0 Ī ĪĬ Īĩ

Ĉis (xĪ ,Ĉ ) Ĉo (xĩ ,Ĉ )

Đr (x, xĪ )

Đr (x, xĬ )

Fig. 2. The volume rendering equation (VRE) describing the radiance

Ĉ (x, Ĉ ) involves the integral of the a�enuated in-sca�ered radiance

Ĉis (xĪ , Ĉ ) along the volume and the outgoing surface radiance Ĉo (xĩ , Ĉ ) .

direction Ĉ into a volume Ĉv and a surface contribution Ĉs:

Ĉ(x, Ĉ) =

∫ ĪĬ

Ī0

Ăs (xĪ )Đr (x, xĪ )Ĉis (xĪ , Ĉ) dĪ

︸                                     ︷︷                                     ︸
Ĉv (x,Ĉ )

+Đr (x, xĩ )Ĉo (xĩ , Ĉ)

︸                ︷︷                ︸
Ĉs (x,Ĉ )

.

(1)
Fig. 2 visualizes the individual components of the VRE. The vol-
ume contribution Ĉv is de�ned by the integral of the attenuated
in-scattered radiance Ĉis along a ray segment [Ī0, ĪĬ] covering the
volume. The in-scattered radiance Ĉis at a point xĪ = x + ĪĈ1 is the
spherical integral of the incoming radiance Ĉ arriving at xĪ from a
direction Ĉ ′, that is scattered according to a phase function Ā in the
outgoing direction Ĉ :

Ĉis (xĪ , Ĉ) =

∫

¬

Ā (xĪ , Ĉ, Ĉ
′)Ĉ(xĪ , Ĉ

′) dĈ ′ . (2)

The attenuation of Ĉis between xĪ and x is the product of the local
scattering coe�cient Ăs at xĪ and the volume transmittanceĐr from
xĪ to x.

The transmittance function Đr (x1, x2) quanti�es the attenuation
of light between two points inside a volume due to absorption and
out-scattering:

Đr (x1, x2) = exp(−ă (x1, x2)), with ă (x1, x2) =

∫
x2

x1

Ăt (x) dx. (3)

This function is de�ned by an exponential of optical thickness ă ,
that is the integral of the extinction coe�cient Ăt over the volume
segment between x1 and x2.

The surface contribution Ĉs is the outgoing radiance Ĉo from the
�rst surface point xĩ behind or inside the volume that is attenuated
by the volume. The outgoing radiance Ĉo is de�ned by the Rendering
Equation (RE) [Kajiya 1986]:

Ĉo (x, Ĉ) = Ĉe (x, Ĉ) +

∫

¬

Ĝs (x, Ĉ, Ĉ
′) cos(Ă ′)Ĉ(x, Ĉ′) dĈ ′, (4)

where Ĉe is the emitted radiance. The integral over the sphere is
the incoming radiance Ĉ at x from direction Ĉ ′, scattered by the
Bidirectional Scattering Distribution Function (BSDF) Ĝs into the
outgoing direction Ĉ , and Ă ′ is the angle between the incoming
radiance and the surface normal. The attenuation of Ĉo is de�ned

1For better readability of the equations throughout the text, we slightly abuse notation
and denote positions corresponding to distances with a speci�cmeaning as xġ = x+ĪġĈ
for ġ ∈ {0, Ĭ, ĩ }.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: September 2024.



4 • Kehan Xu, Sebastian Herholz, Marco Manzi, Marios Papas, and Markus Gross

by the transmittance Đr (x, xĩ ) between x and xĩ which, under the
assumption of a vacuum outside volumes, is equal to the volume
transmittance Đr (x0, xĬ).

3.2 Volumetric Path Tracing

The VRE typically lacks a closed-form solution and is commonly
solved using a volumetric extension of the Monte Carlo-based path
tracing algorithm [Kajiya 1986]. The algorithm numerically esti-
mates the nested integrals of the VRE by tracing random paths
through the scene, starting at x in the direction Ĉ . The directions
and distances of each path segment are, thereby, determined by the
nested Monte Carlo estimators for the VRE’s nested integrals.

Each path returns a Monte Carlo estimate ïĈ(x, Ĉ)ð of the incom-
ing radiance which we can write as follows:

ïĈ(x, Ĉ)ð =

{
1
Čvol
ïĈv (x, Ĉ)ð if Ĉ < Čvol,

1
1−Čvol

ïĈs (x, Ĉ)ð otherwise.
(5)

To estimate Ĉ, the estimator �rst decides if the path should explore
the volume contribution (i.e., calling ïĈvð) or the surface contribu-
tion (i.e., calling ïĈsð). This binary decision is driven by the volume
scattering probability Čvol.
In the �rst case, when the volume contribution is picked, the

estimator for Ĉv at the current vertex x and for the direction Ĉ of
the current path segment is:

ïĈv (x, Ĉ)ð =
Đr (x, xĪ )Ăs (xĪ )ïĈis (xĪ , Ĉ)ð

Ħdist (Ī)
. (6)

The estimator ïĈv (x, Ĉ)ð samples a random distance Ī according to
some distance PDF Ħdist, calculates the product of the transmittance
Đr (x, xĪ ), the local scattering coe�cient Ăs, and an estimate of the
in-scattered radiance Ĉis at xĪ and divides the result by Ħdist.
In the second case, when the surface contribution is picked, the

estimator ïĐr (x, xĩ )ð (Sec. 3.3.2) is used to evaluate the transmittance
towards the next surface intersection xĩ which is multiplied by the
estimated outgoing radiance Ĉo, emitted and re�ected at xĩ in the
direction Ĉ :

ïĈs (x, Ĉ)ð = ïĐr (x, xĩ )ðïĈo (xĩ , Ĉ)ð. (7)

In both cases, the evaluations require calling the following nested
estimators respectively for Ĉis and Ĉo:

ïĈis (xĪ , Ĉ)ð =
Ā (xĪ , Ĉ, Ĉ

′)ïĈ(xĪ , Ĉ
′)ð

Ħ (Ĉ ′)

ïĈo (xĩ , Ĉ)ð = Ĉe (xĩ , Ĉ) +
Ĝs (xĩ , Ĉ, Ĉ

′) cos(Ă ′)ïĈ(xĩ , Ĉ
′)ð

Ħ (Ĉ ′)
.

(8)

Both estimators sample a random direction Ĉ ′ according to a direc-
tional PDF Ħ (Ĉ ′) in which the path continues. The evaluation of
the corresponding integrands from Eq. 2 and Eq. 4 trigger recursive
calls of the estimator ïĈð de�ned in Eq. 5.

Previous works mainly focused on importance sampling for direc-
tional decisions (in volumes or on surfaces) and distance sampling.
The volume scattering probability Čvol is usually not driven ex-
plicitly but stems from transmittance-based distance sampling (see
Sec. 3.3). This work focuses on optimizing Čvol, which can already
lead to a signi�cant variance reduction for ïĈð (Sec. 8.3) while still

using common importance sampling strategies (e.g., transmittance-
based distance sampling) for the remaining decisions.

3.3 Distance Sampling, Volume Sca�ering and

Transmi�ance Evaluation

Deciding whether and where to scatter within a volume and estimat-
ing the transmittance between two points are crucial components
for solving the VRE. We will examine these in more detail in the
following.

3.3.1 Distance Sampling and Sca�ering Probabilities. Ideally, a dis-
tance Ī should be sampled according to a PDF Ħdist (Ī) that is pro-
portional to the integrand of Ĉv in Eq. 1. Unfortunately, this would
require prior knowledge about the global light transport quantity
Ĉis for all positions xĪ and outgoing directions Ĉ inside the volume,
which is typically unknown. Instead, traditional distance sampling
strategies focus on parts of the integrand that depend on known
volume quantities (e.g., Ăt ) and, therefore, sample Ī with a PDF Ħdist
that is equal to the product of the local extinction coe�cient and
transmittance:

Ħdist (Ī) = Ăt (xĪ )Đr (x, xĪ ). (9)

These distance sampling strategies are not bounded to the range of
the volume and can sample distances behind the volume, leading to
scattering events on the closest surface intersection xĩ . This feature
leads to an implicit de�nition of the volume scattering probability
Čvol that depends on the transmittance from x to xĩ :

Čvol =

∫ ĪĬ

Ī0

Ăt (xĪ )Đr (x, xĪ ) dĪ = 1 −Đr (x0, xĬ), (10)

while ĪĬ is either the distance to the end of the volume or to the next
surface interaction if the surface is inside the volume (xĬ = xĩ ). The
probability Čsurf for the next scattering event being on the closest
surface is Čsurf = 1 − Čvol. Throughout this paper, we will call
strategies resulting in Eq. 9 and Eq. 10 transmittance-based distance
sampling strategies.

For homogeneous volumes, where Ăt is constant, sampling a dis-
tance Ī (starting at Ī0) proportional to transmittance can be achieved
analytically using the inverse CDF method:

Ī = −
ln(1 − Ĉ)

Ăt
, (11)

where Ĉ is a uniform random number in the range of [0, 1).

Delta Tracking. For heterogeneous volumes, the inverse CDF
method is typically not applicable to sample according to Eq. 9.
Instead, delta tracking [Woodcock et al. 1965] is used, which �rst
homogenizes the heterogeneous volume by �lling it with so-called
null-collision particles Ăā with a majorant density of Ă :

Ă = Ăā (x) + Ăt (x). (12)

Afterward, the algorithm steps through the homogenized volume by
sampling distances using the CDF method based on the majorant
density (see Eq. 11), generating so-called event candidates. Each
candidate can either be a null-scattering or a real-scattering event.
Null-scattering events do not change the direction or the amount of
light that passes through the volume, while real-scattering events
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Delta TrackingDelta Tracking

Increased VSPIncreased VSP

Delta TrackingDelta Tracking

Decreased VSPDecreased VSP

Fig. 3. Motivational example comparing how changing the volume sca�ering probability (VSP) a�ects the variance in images. We discuss these examples in

detail in Sec. 4. Increasing the VSP in the le� image and decreasing it in the right image lead to a significant variance reduction in both cases.

leads to its absorption and out-scattering. At each candidate position
xğ the scattering event type is selected based on the two probabilities:

Čreal (xğ ) =
Ăt (xğ )

Ă
and Čnull (xğ ) = 1 − Čreal (xğ ) . (13)

If a null-scattering event is selected, the process continues sampling
the distance to the next candidate position, and if a real-scattering
event is selected, the process stops. The current position xğ is re-
turned as the position for the next volume scattering event. If no
real-scattering event is selected before the procedure reaches the
end of the volume or steps over a surface inside the volume, the
next scattering event will be on the closest surface behind or inside
the volume. Later in Sec. 5.3, we describe a reformulation of delta
tracking under a resampling framework that was inspired by the
insights of Wrenninge and Villemin [2020], which forms the basis
of our methodology.

3.3.2 Transmi�ance Evaluation. In heterogeneous volumes, evalu-
ating the transmittance requires solving the optical thickness (Eq. 3)
between the two points x0 and x1. Usually the optical thickness

cannot be evaluated analytically and the transmittance is therefore
estimated.
The delta tracking algorithm can be used as a binary estimator

for this quantity: If the procedure generates a volume sample, the
estimator returns 0; if it generates a surface sample, it returns 1.

The ratio tracking estimator [Novák et al. 2014] is a lower variance
non-binary transmittance estimator; Instead of making stochastic
scattering or termination decisions at each sampled location, it
deterministically continues until the sample is past the volume or
at the �rst surface. This procedure results in candidates at location
x1, ..., xĤ where the distance to xĤ is smaller or equal to the distance
to xĪ . The ratio tracking estimator ïĐrðratio is then the product of
the null-scattering probabilities Čnull of all candidates:

ïĐr (x, xĪ )ðratio =

Ĥ∏

ğ=1

Čnull (xğ ) . (14)

Later, in Secs. 5.3 and 5.4, this de�nition of the ratio tracking
estimator is used to reformulate delta tracking as a resampling
process and to derive our new distance sampling algorithm that can
reach arbitrary VSP values.

4 MOTIVATION AND GOAL

The transmittance-based distance sampling method discussed in the
previous section (Sec. 3.3.1) does only consider local volume proper-
ties and neglects the global information, such as the contributions
of the nested estimators.
It is, therefore, unable to optimally importance sample all terms

in Eq. 5. In Fig. 3, we show on two simple examples how considering
the contribution of the nested estimators when sampling the VSP
can be bene�cial.

The �rst example (Fig. 3, left) shows an optically thin and brightly
lit volume in front of a dark surface. In this case, the volume sampling
probability Čvol is small. Thus, only a small fraction of the camera
rays actually scatter in the volume. However, the contribution of the
total radiance estimator ïĈ(x, Ĉ)ð is dominated by the contribution
of the volume ïĈis (x, Ĉ)ð, thus increasing Čvol reduces the variance
of the rendered image.
The second example (Fig. 3, right) shows an optically thick and

dimly lit volume in front of a back-lit rough glass wall. In this
case, Čvol is large. Thus, only a small fraction of camera rays pass
through the volume to scatter on the back-lit surface. However, the
contribution of the total radiance estimator ïĈ(x, Ĉ)ð is dominated
by the contribution of the surface contribution estimator ïĈo (x, Ĉ)ð,
thus decreasing Čvol reduces the variance of the rendered image.
Note that we guide the volume sampling probability in both

examples following the algorithm presented in Sec. 5.4.

Goals of Our Method. We aim to design a practical and widely
applicable VSP guiding method that reduces variance and is fully
automatic, lightweight, and robust.

By deriving our optimal VSP values from optimal sampling theo-
ries (Sec. 5.1), our VSP guiding framework does not require manual
tuning of hyperparameters. Our method is integrated into a path-
guiding framework, which we modi�ed to automatically provide
continuously improved optimal VSP estimates to our distance sam-
pling routines (Sec. 7).
To keep our approach lightweight, we focus on VSP guiding

instead of product distance guiding [Herholz et al. 2019] since the
former avoids the need to query information about the in-scattered
radiance Ĉis along the ray during sampling.
Finally, to make our method robust, we need to ensure that our

method does not lead to a variance increase when compared to
traditional transmittance-based distance sampling. We, therefore,
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designed a scaled transmittance-based distance sampling strategy
(Sec. 5.2) that closely aligns the sampling distribution to be propor-
tional to the one from transmittance-based methods while allowing
�exible adjustment of the resulting volume sampling probability.

5 METHODOLOGY

In this section, we outline our algorithm of volume scattering prob-
ability guiding (VSPG or VSP guiding). We �rst de�ne the optimal
volume scattering probability (VSP) (Sec. 5.1) and how we want this
to a�ect distance sampling (Sec. 5.2). Next, we formulate delta track-
ing as a resampling algorithm that allows us to modify the distance
sampling distribution through resampling weights (Sec. 5.3). This
serves as a basis to �nally describe a resampling algorithm that
achieves distance sampling with the desired properties and enables
us to reach an arbitrary VSP (Sec. 5.4). We analyze the properties
of the resulting distribution in Sec. 6 and the integration of the
method within a VSP guiding framework in Sec. 7. An extension
of the resampling algorithm for chromatic media is described in
AppendixA.

5.1 Optimal Volume Sca�ering Probability

In the following, we derive two optimal formulations for Čvol given
di�erent assumptions about the underlying estimators. The corre-
sponding probabilities are denoted as Č1st

vol
and Č2nd

vol
for being related

to the �rst and second moments of the estimators.

Č
�

vol
Č
�

vol
Č
1st

vol
Č
1st

vol
Č
2nd

vol
Č
2nd

vol

Fig. 4. Equal-sample comparison (64spp) on Landscape of no guiding (le�)

to VSPG using the contribution-based criterion (Sec. 5.1.1) (middle) and

the variance-based criterion (Sec. 5.1.2) (right). The resulting Čvol is shown

at the bo�om. Variance-based criterion detects the need for a higher Čvol
than contribution-based to eliminate the overall noise.

5.1.1 Contribution-based Criterion. The optimal volume and sur-
face sample distribution under the zero-variance framework should
be proportional to the respective contribution values (i.e., �rst mo-
ments) Ĉv (x, Ĉ) and Ĉs (x, Ĉ) [Herholz et al. 2019]. In this framework,
the recursive estimators for Ĉv (x, Ĉ) and Ĉs (x, Ĉ) are assumed to
have zero variance, and the optimal VSP is:

Č1st
vol

=

Ĉv (x, Ĉ)

Ĉv (x, Ĉ) + Ĉs (x, Ĉ)
=

Ĉv (x, Ĉ)

Ĉ(x, Ĉ)
. (15)

5.1.2 Variance-based Criterion. Achieving zero-variance sampling
for complex integrals like those in the VRE is often not possible in
practice, and thus, the assumptions of the zero-variance framework
are typically violated. However, it is straightforward to derive the
optimal VSP for nested estimators with non-zero variance [Rath
et al. 2020]:

Č2nd
vol

=

√
ĉvol√

ĉvol +
√
ĉsurf

, (16)

whereĉvol andĉsurf are the second moments of the volume and
surface contribution estimators:

ĉvol = E
[
ïĈv (x, Ĉ ) ð

2
]
=

∫ ĪĬ

Ī0

(Đr (x, xĪ )Ăs (xĪ ) ïĈis (xĪ , Ĉ ) ð)
2

Ħ (xĪ )
dxĪ ,

(17)

ĉsurf = E
[
ïĈs (x, Ĉ ) ð

2
]
= E

[
ïĐr (x, xĩ ) ð

2
]
E
[
ïĈo (xĩ , Ĉ ) ð

2
]

= E
[
ïĐr (x, xĩ ) ð

2
] ∫

¬

(Ĝs (xĩ , Ĉ,Ĉ
′ ) cos(Ă ′ ) ïĈ (xĩ , Ĉ

′ ) ð)2

Ħ (Ĉ ′ )
dĈ ′ .

(18)

For simplicity’s sake, we dropped the emission term of Ĉo in Eq. 18.
In practice, we do not know the exact values of the contributions

Ĉv (x, Ĉ), Ĉs (x, Ĉ) or the second moments ĉvol, ĉsurf and need
to estimate them. Details on the computation of these estimates
are provided in Sec. 7. To simplify the discussion in the remaining
sections, we unify the notation of the optimal VSP to Č★

vol
, which can

be replaced by Č1st
vol

or Č2nd
vol

unless noted otherwise. Fig. 4 provides
an example of the comparison between the two criteria.
Note that, in both variants, the optimal VSP does not require

knowledge of the distribution of Ĉis along the ray, but only of related
quantities that are integrated over the ray. This allows for e�cient
caching and querying of the related quantities as discussed in Sec. 7.

5.2 Scaled Transmi�ance-based Distance Sampling

In our proposed framework, we focus on guiding the VSPs to follow
the optimal ones de�ned in Sec. 5.1. At the same time, however, we
aim to distribute samples within the volume proportional to the
product of transmittance and the local extinction coe�cient, like in
delta tracking. We achieve this with a scaled distance sampling PDF
of:

Ħdist (Ī) = ÿĂt (xĪ )Đr (x, xĪ ) (19)

with constant ÿ such that:

Č★
vol

=

∫ ĪĬ

Ī0

ÿĂt (xĪ )Đr (x, xĪ ) dĪ = ÿ (1 −Đr (x, xĬ)) . (20)

Developing a distance sampling scheme for homogeneous vol-
umes that adheres to this Ħdist (Ī) using the inverse CDF method is
straightforward. Based on Č★

vol
, we �rst decided whether to scatter

inside the volume or not. If so, a distance between Ī0 and ĪĬ can be
sampled analytically based on transmittance according to Eq. 9 in
[Kulla and Fajardo 2012]. However, achieving this distance sampling
PDF with a heterogeneous medium is more challenging. For this
purpose, we utilize the resampling framework described in the next
section.

5.3 Delta Tracking as a Resampling Method

As Wrenninge and Villemin [2020] pointed out, delta tracking can
be reformulated as a resampling method.

In the �rst step, ratio tracking is used to step through the volume
or to the next surface intersection to generate a transmittance es-
timate ïĐr (x0, xĩ )ðratio. Unlike normal ratio tracking, we keep the
event candidates for further reuse. This way we obtainĉ − 1 event
candidates at x1, ..., xĉ−1 inside the volume and one surface sample
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x0 xv xs

t

1

Volume Properties

Extinction Coefficient t(xt)
Transmittance Tr(x0, xt)

x0 xv xs

1

Candidate Generation

Tr(x0, xt) t(xt)
Candidates

x0 xv xs

1

Resampling Weight Correction

w
w

x0 xv xs

Pvol

Pvol

1

Volume Sample Distribution

Delta Tracking
Resampling

Psurf

Psurf

Fig. 5. Visualization of the resampling procedure. From le� to right: (1) a simple 1D slice of a heterogeneous volume; (2) we generate candidate samples

using ratio tracking and use them to estimate transmi�ance; (3) we then scale the delta tracking resampling weight ĭ� to become ĭ★ (Eq. 24); (4) we resample

a single candidate from these event candidates according to the scaled weights ĭ★; the resulting sample distributions obtained from using ĭ� and ĭ★ are

illustrated. Note that our proposed algorithm reaches the desired volume sca�ering probability precisely.

xĉ = xĩ . Further, we associate each candidate with a resampling
weight:

ĭ� (xğ ) = Čreal (xğ )

(ğ−1∏

Ġ=1

Čnull (xĠ )

)
(21)

for the volume candidates, and:

ĭ� (xĉ ) =

ĉ−1∏

Ġ=1

Čnull (xĠ ) = ïĐr (x0, xĩ )ðratio (22)

for the surface candidate. The need to store all the candidates ex-
plicitly is avoided by using reservoir sampling; this is elaborated in
Sec. 5.5.

In the second step, we pick a single sample from the set ofĉ can-
didates proportionally to the resampling weights. The resampling
weights de�ne a valid probability density over the candidates for re-
sampling since

∑ĉ
ğ=1ĭ

� (xğ ) = 1. The resulting sample distribution

and VSP, denoted by Ħ�
dist
(x) = ĭ� (x) and Č�

vol
, are by construction

identical to delta tracking. This resampling formulation allows us to
adjust the sampling distribution and the resulting VSP by modifying
the resampling weights.

5.4 Modify the Resampling Weight

Next, we adjust the resampling weights of the above resampling
algorithm to achieve the desired VSP Č★

vol
while keeping the sample

distribution within the volume approximately proportional to the
product of transmittance and the local extinction coe�cient (Eq. 9).
We propose to use two constant weight scaling factors, one applied
to all volume candidate weights (ÿvol), and another applied to the
single surface candidate weight (ÿsurf):

ÿvol =
Č★
vol

1 − ïĐr (x0, xĩ )ðratio
, ÿsurf =

1 − Č★
vol

ïĐr (x0, xĩ )ðratio
. (23)

Here ïĐr (x0, xĩ )ðratio is the ratio tracking estimator obtained from
the volume candidates during the �rst step of the resampling algo-
rithm. The scaled resampling weights are thus:

ĭ★(xğ ) =

{
ÿvolĭ

� (xğ ) volume sample xğ (1 f ğ < ĉ),

ÿsurfĭ
� (xğ ) surface sample xĉ .

(24)

With
∑ĉ
ğ=1ĭ

★(xğ ) = 1, these scaled resampling weights still de-
�ne a valid probability density. It is straightforward to show that

using those resampling weights instead of those de�ned in Eq. 21
and Eq. 22 changes the probability of sampling a volume event af-
ter the resampling step from 1 − Đr (x0, xĩ ) to the desired Č★

vol
. A

visualization of the resampling procedure is provided in Fig. 5.

5.5 Practical Considerations

In the following, we discuss multiple approaches to optimize our
previously introduced resampling method for guiding the VSP.

Target Č★
vol

Target Č★
vol

Achieved Č
★

vol
Achieved Č

★

vol Di�.Di�.

N
a
ive

C
o
rrected

Fig. 6. Equal-sample comparison (64spp) on Landscape without (top) and

with (bo�om) zero volume event candidate correction. Green shows the

target Č★
vol

, blue the achieved Č★
vol

, and purple the di�erence between

achieved VSP and target Č★
vol

.

Zero Volume Event Candidate. The number of scatter candidates to
resample from cannot be controlled directly since their generation
process is ratio tracking. In the occasional case when the ratio
tracking estimator samples the �rst distance to be greater than ĪĬ ,
no volume scatter candidate will be created. The probability of such
an event occurring depends on the majorant of the volume Ă and
the distance to the volume boundary ĪĬ and is equal to majorant
transmittance: exp(−ĂĪĬ). Whenever this happens, the probability
to sample the volume is 0 and not Č★

vol
. The resulting Čvol from our

algorithm is thus:

Čvol =

{
0 with probability exp(−ĂĪĬ),

Č★
vol

with probability 1 − exp(−ĂĪĬ) .

which, in expectation, yields E
[
Čvol

]
= Č★

vol
(1 − exp(−ĂĪĬ)). In

practice, this means the resulting volume scattering probability will
be lower than the desired Č★

vol
.

We have two ways to improve this behavior; either by increasing
the majorant Ă leading to decreasing exp(−ĂĪĬ) or by increasing
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Č★
vol

by a factor of 1/(1 − exp(−ĂĪĬ)). The �rst approach increases
the number of scatter candidates and thus the cost of our resam-
pling algorithm, while the second one is limited to situations when
Č★
vol
/(1 − exp(−ĂĪĬ)) f 1.

Our proposed solution combines both ideas by increasing the ma-
jorant Ă as little as possible, such that the second approach becomes
applicable. In detail, we �rst increase the majorant to:

Ă′ = max
(
Ă,− ln(1 − Č★

vol
)/ĪĬ

)
, (25)

and then we increase the volume scattering probability used for
computing ÿvol and ÿsurf (Eq. 23) to:

Č★′
vol

= Č★
vol
/(1 − exp(−Ă′ĪĬ)), (26)

such that: E
[
Čvol

]
= Č★′

vol
(1 − exp(−Ă′ĪĬ)) = Č

★

vol
. This ensures that

Č★′
vol
f 1 and therefore allows us to always reach the desired Č★

vol
.

We show the e�ect of this addition to our algorithm in Fig. 6.

Defensive resampling. As we will discuss in Sec. 7, we have to esti-
mate Č★

vol
during rendering. Unfortunately, we can not bound the

estimation error of Č★
vol

, and, in rare cases, bad estimates can lead
to our resampling algorithm performing worse than naive delta
tracking. We mitigate this by interpolating between the scaled and
original resampling weights, i.e.:

ĭĂ = Ăĭ★ + (1 − Ă)ĭ� (27)

where Ă is a user-de�ned weight that controls how closely we want
to sample according to Č★

vol
. This corresponds to using Multiple

Importance Sampling (MIS) with the one-sample model using the
balance heuristic [Veach and Guibas 1995]. The resulting VSP is
ČĂ
vol

= ĂČ★
vol
+ (1 − Ă)Č�

vol
. We found Ă = 0.75 to work well in all

our experiments.2

Reservoir Sampling. To bound memory consumption of our resam-
pling method, we utilize weighted reservoir sampling [Chao 1982]
instead of storing all candidates explicitly before resampling. Reser-
voir sampling processes elements in order from an input stream
ofĉ candidates and stores a reservoir of Ċ samples (Ċ = 1 in our
case) from these candidates. Each incoming element xğ with weight
ĭ (xğ ) replaces the sample in the reservoir with the replacement
probability ČĨěĩ = ĭ (xğ )/

∑ğ
Ġ=1ĭ (xĠ ).

For our method, the resampling weightĭ★(xğ ) (Eq. 24) includes
either ÿvol or ÿsurf. Both can be calculated only after �nishing sam-
pling all the event candidates {x1, ..., xĉ }. While the factor ÿvol is
unknown during reservoir sampling for volume event candidates,
it is shared among all volume candidate resampling weights and
cancels out in the replacement probability.
After streaming all the volume candidates, the �nal decision is

between the volume candidate xğ inside the reservoir and the surface
candidate xĉ . The denominator in ČĨěĩ is then 1 which means the
�nal replacement probability is simply ÿsurfĭ

� (xĉ ) = ĭ
★(xĉ ).

The pseudocode in Alg. 1 shows our resampling approach using
reservoir sampling, defensive resampling, and the zero volume event
candidate correction.

2Nevertheless, lower values like Ă = 0.5 might be bene�cial in high-variance setups.

ALGORITHM 1: Volume Scattering Probability Guiding

1 Function VSPG(Ă, ĪĬ, Č
★

vol
, Ă):

2 Reservoir r

3 Ī ← 0, ïĐr ðratio ← 1, ĭsum ← 0

4 Ă ′, Č★′
vol
← ZeroVolumeCandidateCompensation(Ă, ĪĬ, Č

★

vol
, Ă)

5 while true do

6 Ī ← Ī −
ln(1−Ĉ )

Ă ′
// Distance sampling, Eq. 11

7 xğ ← x + ĪĈ // Generate a volume candidate

8 if Ī g ĪĬ then

9 break

10 ïĐr ðratio ← Čnull (xğ ) ïĐr ðratio

11 ĭsum ← ĭĩīģ + ĭ
� (xğ ) // Eq. 21

12 r.update(xğ ,
ĭ� (xğ )
ĭĩīģ

)

13 end

14 xĉ ← x + ĪĬĈ // Generate the surface candidate

/* Defensive resampling */

15 ĭĂ
sum ← Ă (1 − Č★′

vol
) + (1 − Ă )ĭsum // Eq. 27

16 ĭĂ (xĉ ) ← ĂČ★′
vol
+ (1 − Ă )ĭ� (xĉ ) // Eq. 22, Eq. 27

17 ĭĂ
sum ← ĭĂ

sum + ĭ
Ă (xĉ )

18 r.update(xĉ , ĭĂ (xĉ )

ĭĂ
sum

) // ĭĂ
sum = 1

/* Set path segment throughput */

19 ČĂ
vol
← ĂČ★′

vol
+ (1 − Ă ) (1 − ïĐr ðratio ) // Resulting VSP

20 Ĩ .Đp ←
1−ïĐrðratio

ČĂ
vol

or ïĐrðratio
1−ČĂ

vol
// Eq. 28

21 return r

22 Function ZeroVolumeCandidateCompensation(Ă, ĪĬ, Č
★

vol
, Ă):

23 Ă ′ ← max
(
Ă, − ln(1 − Č★

vol
)/ĪĬ

)
// Eq. 25

24 Č★′
vol
← Č★

vol
/(1 − exp(−Ă ′ĪĬ ) ) // Eq. 26

25 return Ă ′, Č★′
vol

6 SAMPLE DISTRIBUTION ANALYSIS

The resampling algorithm aims to achieve a VSP of Č★
vol

while keep-
ing the relative distribution of samples within the volume as pro-
portional as possible to delta tracking. We will discuss if and when
this is achieved in the following section.
We �rst analyze the path segment’s throughput from our pro-

posed resampling scheme. As opposed to delta tracking, which has a
constant path segment throughput of 1, our sampling scheme yields
the following:

Ħ�
dist
(xğ )

ĭ★(xğ )

ĉ∑

Ġ

ĭ★(xĠ ) =




1−ïĐr (x0,xĩ ) ðratio
Č★
vol

for xğ (1 f ğ < ĉ),

ïĐr (x0,xĩ ) ðratio
1−Č★

vol

for xĉ .

(28)

This follows from
∑ĉ
ğ=1ĭ

★(xğ ) = 1 and the de�nitions in Eq. 24
and Eq. 23. Examining this expression shows that the ratio tracking
transmittance estimate ïĐr (x0, xĩ )ðratio is not canceled out. This has
two consequences:
First, unlike in delta tracking, the throughput itself becomes

noisy (see Fig. 7, bottom-left). However, our experimental results
in Sec. 8.3 imply that transmittance typically is not a dominating
source of noise (i.e., variance) in the renderings. Thus importance
sampling ïĈo (x, Ĉ)ð and ïĈis (x, Ĉ)ð through better VSP sampling
usually still decreases the variance.
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Second, using our proposed resampling procedure will slightly
�atten the distribution of the samples within the volume. The un-
derlying reason for this behavior lies in the correlation between
the resampled volume location xĪ and the transmittance estimate
ïĐr (x0, xĩ )ðratio used in the weightsĭ★ (Eq. 23), which stems from
sharing the event candidates for resampling and transmittance
estimation. This correlation causes the transmittance estimates
ïĐr (x0, xĩ )ðratio at any speci�c resampled location xĪ to be biased.
Note that the unbiasedness of our algorithm is guaranteed by the
transmittance estimates being unbiased when integrated over all
resampled locations. To see this on a trivial example, suppose a
resampled location xğ has ĂĪ (xğ ) = Ă . Then any ratio tracking esti-
mator (Eq. 14) forĐr (x0, xĩ ) that includes this candidate will be zero
since Čnull (xğ ) = 0. This clearly underestimates the transmittance,
as the volume is heterogeneous. Fig. 7 shows this behavior on a
more complex example. This correlation leads to over-estimation
of the transmittance in low-density regions and under-estimation
in high-density regions (Fig. 7, top-right). Since the throughput
is multiplied by 1 − ïĐr (x0, xĩ )ðratio, high volume density regions
correspond to high throughput and low volume density regions to
low throughput (Fig. 7, bottom-left). As our total estimate of Ĉ is
unbiased, the sampling density inside the volume has to decrease
in regions with higher throughput and vice versa (Fig. 7, bottom-

right).
The distribution’s �attening correlates with the average number

of candidates from the resampling procedure. A simple way to
increase the number of candidates is to increase the majorant Ă used
for candidate generation. This simultaneously reduces the variance
in our transmittance estimate due to higher quality transmittance
estimates and reduces the �attening of the sample distribution in
the volume. In the limit, the variance in the throughput tends to
zero, and the distribution of volume samples becomes proportional
to the one from delta tracking (Fig. 8). However, since increasing
the number of candidates also increases the cost of our sampling
procedure and we did not observe obvious negative e�ects due to
the �attening in our evaluation, a careful analysis of this trade-o�
seems warranted. We leave this as future work.

7 VOLUME SCATTERING PROBABILITY GUIDING

(VSPG) FRAMEWORK

Previous sections derived and analyzed our VSP-driven distance
sampling algorithm,which can achieve desired VSPswhile still being
approximately proportional to the product of transmittance and
local extinction. The following section explains the data structure
we use to represent and query the optimal VSP values for each
position and direction in a scene. These two pieces combined to
build our VSP guiding framework. The data structure consists of
two components: an image space auxiliary VSP bu�er (Sec. 7.1) for
guiding the VSP for primary camera rays and a 5-dimensional spatio-
directional VSP data structure (Sec. 7.2) for guiding the VSPs for
secondary rays.

7.1 Primary Ray Image Space VSP Bu�ers

To estimate Č★
vol

for all primary camera rays, we store estimates of
the required quantities, like Ĉv (Eq. 6), Ĉs (Eq. 7), ĉvol (Eq. 17), or

x0 xv xs

t

1
Volume Properties

Extinction Coefficient t(xt)
Transmittance Tr(x0, xt)

x0 xv xs

Tr

1

Expected Transmittance 
per Location

Mean Tr(x0, xs) ratio at xt

x0 xv xs

1

1/Cvol

2

Distribution of L(xt)
per Location

Delta Tracking
Resampling

x0 xv xs

Pvol

Pvol

1

Volume Sample Distribution
pdist(xt)

Delta Tracking
Resampling
Cvol Tr(x0, xt) t(xt)

Psurf

Psurf

Fig. 7. We demonstrate on a simple 1D volume (top-le�) the e�ect of

our resampling procedure on the sample distribution within the volume

(bo�om-right) and the throughput of the samples (bo�om-le�). The

cause for the change in distribution is the correlation of the transmi�ance

estimate with the re-sampled location (top-right). The horizontal line 1/ÿvol

(bo�om-le�) represents the throughput averaged over all samples across

all locations.

x0 xv xs

1
1/Cvol

2

Median of the Distribution of L(xt)
per Location

x0 xv xs

1

Volume Sample Distribution
pdist(xt)

t×1
t×2
t×4
t×8
t×16
t×32

1/Csurf

Fig. 8. We analyze the e�ect of loosening the majorant Ă to increase the

average number of candidates per sample. We show on the le� that the

median of the throughput distribution per location xĪ becomes more con-

stant and approaches the correct throughput 1/ÿvol (Eq. 23) and on the

right that the resulting volume sample distribution approaches the desired

ÿvolĐr (x0, xĪ )ĂĪ (xĪ ) . This experiment uses the same 1D volume as Fig. 7.

ĉsurf (Eq. 18), in an auxiliary image space bu�er (Fig. 9). The bu�er
is updated incrementally during rendering after each progression. To
remove noise in the bu�ers, we denoise them during the rendering
progressions at {20, 21, ..., 2Ĥ} samples per pixel. At the beginning
of the path sampling process, the auxiliary bu�er is queried to
estimate Č★

vol
for the pixel’s primary camera ray. Depending on

the VSP guiding type, i.e. contribution or variance-based, Č★
vol

is
either estimated according to Eq. 15 or Eq. 16. To enable quick and
robust learning of the VSP values, we use a constant VSP value of
0.5 for the �rst rendering progression when the VSP bu�er contains
no information. Fig. 9 shows an example of the auxiliary image
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ĈsĈs

ĈvĈv
Č
1st
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Č
1st
vol

Contribution-based (1st Moment)

√

ĉsurf

√

ĉsurf

√

ĉvol

√

ĉvol
Č
2nd
vol

Č
2nd
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Variance-based (2nd Moment)

Fig. 9. Image space auxiliary bu�er for estimating the VSP for the primary camera rays for the Jungle scene. The le� shows the estimates for the surface and

volume contributions, Ĉs and Ĉv, as well as the resulting Č
1st
vol

(Eq. 15) for each pixel. The right shows the estimates for the square roots of the second moments

ĉsurf andĉvol of the surface and volume contributions and the resulting Č2nd
vol

(Eq. 16).

bu�er for the Jungle scene, including the resulting probabilities for
contribution-based and variance-based guiding of the VSP.

7.2 Secondary Ray VSP Data Structure

For secondary rays, we need to be able to query Č★
vol

at any point x
and for any directionĈ in the scene, independent of whether x is on
a surface or inside a volume. This requires storing our approximation
of Č★

vol
, or the required quantities to derive it, in a 5-dimensional

data structure.
Therefore, we adopt and extend the 5-dimensional path guiding

structure presented by Ruppert et al. [2020] based on parallax-aware
von Mises-Fisher mixture models (VMMs). This structure enables
us querying the parameter set Θ(x) = {ÿ1, Ć1, Ą1, ..., ÿć , Ćć , Ąć } of
a von Mises-Fisher mixture modelV approximating the incoming
radiance distribution at x:

V(Ĉ | Θ(x)) =

ć
∑

ġ=1

ÿġ v(Ĉ | Ćġ , Ąġ ) ∝ Ĉ(Ĉ | Θ(x)). (29)

The mixture represents a normalized spherical distribution by a
weighted sum of ć von-Mises Fisher lobes v, each parameterized
by a weight ÿġ , a mean vector Ćġ and a concentration Ąġ . Each
mixture lobe represents a portion of the overall incoming radiance
distribution. Our method extends this representation by storing
auxiliary data ę★

ġ
(one �oating point number) for each component.

This auxiliary data de�nes each lobe’s contribution to the optimal
volume scattering probability. The �nal Č★

vol
for an arbitrary position

x and direction Ĉ is evaluated as follows:

Č★
vol
(x, Ĉ) =

ć
∑

ġ=1

ę★
ġ
aġ (Ĉ | Θ(x)), (30)

where the soft assignment function aġ determines the contribution
the ġth lobe of the mixture has to the incoming radiance approxi-
mation from direction Ĉ :

aġ (Ĉ | Θ(x)) =
ÿġ v(Ĉ | Ćġ , Ąġ )

V(Ĉ | Θ(x))
. (31)

The auxiliary data ę★
ġ
is calculated and updated together with the

directional guiding structure, i.e. after the mixture parameters for
the incoming radiance distribution are updated (see [Ruppert et al.
2020] for details). In this process, a set of training samples {ĩ1, ..., ĩĊ }
is provided to update the mixture. Each training sample ĩğ contains a

directionĈğ and weightĭğ = ïĈ(x, Ĉğ )ð that estimates the incoming
radiance arriving at x from Ĉğ (Eq. 5). Before calculating ę★ġ we �rst

aggregate the weights statisticsē★

surf,ġ
andē★

vol,ġ
for the surface

and volume contributions for each component ġ :

ē★

surf,ġ
=

∑Ċ
Ĥ=1 b(ĩğ )ĭ

★

Ĥ aġ (ĈĤ | Θ(x))
∑Ċ
Ĥ=1 b(ĩğ ) aġ (ĈĤ | Θ(x))

, (32)

ē★

vol,ġ
=

∑Ċ
Ĥ=1 (1 − b(ĩğ ))ĭ

★

Ĥ aġ (ĈĤ | Θ(x))
∑Ċ
Ĥ=1 (1 − b(ĩğ )) aġ (ĈĤ | Θ(x))

, (33)

with b(ĩğ ) being a binary function that either returns 1 or 0 depend-
ing on whether the source ofĭğ is a volume or surface interaction:

b(ĩğ ) =

{

1 ĩğ is a volume contribution,

0 otherwise.
(34)

The denominators in Eq. 32 and Eq. 33 determine the partial num-
bers Ċsurf,ġ and Ċvol,ġ , of surface and volume samples associated to
the ġth lobe. Depending on the desired volume scattering probabil-
ity type (i.e., contribution or variance-based),ē★

surf,ġ
andē★

vol,ġ
can

either be the �rst or second-moment contribution aggregates, mean-
ing ĭ★

Ĥ is either ĭğ or ĭ2
ğ respectively. At the end of the training

auxiliary data ę1st
ġ

or ę2nd
ġ

is calculated as follows:

ę1st
ġ

=

Čvol,ġē
1st
vol,ġ

(1 − Čvol,ġ )ē
1st
surf,ġ

+ Čvol,ġē
1st
vol,ġ

,

ę2nd
ġ

=

√

(Čvol,ġ )
2ē 2nd

vol,ġ
√

(1 − Čvol,ġ )
2ē 2nd

surf,ġ
+
√

(Čvol,ġ )
2ē 2nd

vol,ġ

.

(35)

Since the weightsĭğ are results of the estimator ïĈð (Eq. 5) we need
to correct the aggregated values ofē★

vol,ġ
andē★

surf,ġ
to represent

statistics of the two nested estimators ïĈvð (Eq. 6) and ïĈsð (Eq. 7).
We do so by multiplyingē★

vol,ġ
andē★

surf,ġ
with the actual volume

and surface scattering probability Čvol,ġ and 1 − Čvol,ġ for each lobe,
which can be estimated by the number of actual generated surface
and volume samples assigned to the ġ-th lobe:

Čvol,ġ ≈
Ċvol,ġ

Ċsurf,ġ + Ċvol,ġ
. (36)
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8 RESULTS AND IMPLEMENTATION

This section presents details about our implementation of our pro-
posed VSPG framework (Sec. 8.1), a detailed description of the ex-
perimental setup (Sec. 8.2), and in-depth discussions about the eval-
uations of multiple experiments (Secs. 8.3–8.7).

8.1 Implementation

We integrated our VSPG framework, including our VSP-driven dis-
tance sampling algorithm, into the CPU backend of PBRT-v4 [Pharr
et al. 2023] together with an integration of directional path guid-
ing using Intel’s Open Path Guiding Library (OpenPGL) [Herholz
and Dittebrandt 2022]. This library supports directional guiding
on surfaces and inside volumes based on the parallax-aware von
Mises-Fisher mixture model representation presented by Ruppert
et al. [Ruppert et al. 2020]. We extended OpenPGL as described in
Sec. 7.2 to support querying Č★

vol
for any point x and direction Ĉ

in the scene. For denoising our image space VSP bu�er (Sec. 7.1),
we use Intel’s Open Image Denoise (OIDN) [Áfra 2024]. The fol-
lowing experiments are run on a dual-socket machine with two
Intel Xeon Platinum 8260 CPUs, resulting in 48 cores, a total of 96
threads, and 2 terabytes of RAM. To avoid any interference from
the operating system, we run our experiments using only 90 threads.

8.2 Experimental Setup

Since our work consists of two components, the VSPG framework
(Sec. 7) and the resampling-based VSP distance sampling algorithm
(Sec. 5.4), we designed an experimental setup to evaluate both.

To evaluate the performance of our VSPG framework, we compare
it against two volumetric path tracer baselines: one that does not use
any path guiding and one that uses directional path guiding. Both
baselines use delta tracking for distance sampling (Sec. 3.3.1), leading
to a transmittance-based VSP (Eq. 10). The unguided baseline sam-
ples directions using BSDF and phase function-based importance
sampling. The directional guiding baseline importance samples the
directions using the product of the learned incident radiance and the
cosine term on surfaces and using the product of the learned inde-
cent radiance and the phase function in volumes. In both cases, we
use defensive sampling [Hesterberg 1995] via multiple importance
sampling (MIS) [Veach and Guibas 1995] to combine it with BSDF
resp. phase-function-based importance sampling with a selection
probability of 0.5. In addition, we use next-event estimation for light
sampling in combination with MIS in all compared methods.
To evaluate the performance of our resampling-based VSP dis-

tance sampling algorithm,we compare it against thework byVillemin
et al. [2018], which is, to our current knowledge, the only method
explicitly adjusting the VSP. Their method uses an extension of
weighted delta tracking that also adjusts the distance sampling
scheme for event candidates, which they call normalized distance

sampling (NDS). In addition to NDS, they also use a null-collision
probability bias (NCPB) scheme that applies a gamma function to
the null-collision probability (Eq. 13). Finding the correct gamma
value for a given VSP value requires prior knowledge about the
transmittance through the volume. It is mainly used for primary
rays using a pre-computed image-space transmittance bu�er. To

best represent Villemin et al.’s work, we evaluate both versions of
NDS, one without (NDS) and one with NCPB (NDS+). For the latter,
we use a pre-computed transmittance bu�er and exclude the prepro-
cessing time from the reported rendering times. Further, we use an
improved version of their NCPB scheme ([Villemin et al. 2018], Sec
3.3) since the one proposed in their paper did not work as intended
in our experiments (see Appendix B). We combine both variants
with our VSPG framework for primary and secondary rays since
the original approach requires manual adjustment of the VSP for
each scene globally or per volume. We denote the full methods as
VSPG (NDS) and VSPG (NDS+) throughout the text to emphasize
the use of our framework.
For both NDS-based VSPG variants, we use the variance-based

optimal VSP ( Sec. 5.1.2) as this showed slight bene�ts over the
contribution-based alternative. For VSPG that uses our resampled-
based VSP distance sampling, denoted by VSPG (Resampling), we
show results with both optimal VSPs and discuss the di�erences
in Sec. 8.6. Since guiding the VSP for secondary rays always requires
a path guiding data structure, we additionally enable directional
path guiding for all methods that use our VSPG framework.

We use the mean relative squared error (relMSE ) [Rousselle et al.
2011] with a 0.1-percentile outlier removal as our error metric. For
better readability, we scale all relMSE values by a factor of 10x.
Further, for all renderings, we used a maximum path depth of 15
and decided to disable stochastic Russian Roulette to avoid any
variance increase caused by early path termination.

8.3 Scenes & Results

We evaluate our method on various scenes with di�erent volume
types and illumination conditions. Fig. 10 shows equal-time compar-
isons between our proposed VSP guiding variants and the existing
delta tracking and directional guiding baselines, and Tab. 1 presents
some additional statistics such as average path lengths (avg. pl) or
the average number of density queries per path segment (avg. dq).

Jungle, Kitchen and Landscape. These scenes share a similar
setup with optically thin heterogeneous media illuminated by en-
vironmental lighting. The lighting in the scenes is dominated by
low-order volumetric scattering, which is responsible for volumet-
ric shadows and light shafts. Compared to the baselines, all VSPG
methods are able to increase the volume scatter probability and
provide quality improvements under equal time.

UnderWater. This underwater scene is �lled with a thin but large
homogeneous medium representing water. The water surface stems
from an accurate water simulation and is modeled as a rough dielec-
tric material with small surface roughness (Ă = 1ě − 4). Paths have
to scatter through the dielectric surface to reach the environment
map. This scene strongly bene�ts from directional path guiding
to direct paths toward the sun. Our VSPG framework instructs an
overall decrease of the VSP such that more paths reach the water
surface and refract towards the sun instead of scattering away inside
the water. VSPG (Resampling) thus decreases the VSP on the way
to the water surface, leading to shorter average path lengths and
thus more samples per pixel under equal time (see Tab. 1). VSPG
(NDS) and VSPG (NDS+), on the other hand, cannot decrease the
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1.101.10 1.10(1.000x)1.10(1.000x) 0.71(1.557x)0.71(1.557x) 0.32(3.488x)0.32(3.488x) 0.21(5.260x)0.21(5.260x) 0.24(4.647x)0.24(4.647x) relMSErelMSE

40SPP40SPP 37SPP37SPP 36SPP36SPP 37SPP37SPP 39SPP39SPP 38SPP38SPP 300s300s

0.560.56 0.29(1.960x)0.29(1.960x) 0.23(2.418x)0.23(2.418x) 0.20(2.746x)0.20(2.746x) 0.23(2.498x)0.23(2.498x) 0.24(2.329x)0.24(2.329x) relMSErelMSE

206SPP206SPP 158SPP158SPP 136SPP136SPP 137SPP137SPP 128SPP128SPP 125SPP125SPP 300s300s

0.950.95 0.79(1.201x)0.79(1.201x) 0.32(2.981x)0.32(2.981x) 0.27(3.470x)0.27(3.470x) 0.27(3.454x)0.27(3.454x) 0.27(3.461x)0.27(3.461x) relMSErelMSE

56SPP56SPP 67SPP67SPP 65SPP65SPP 65SPP65SPP 63SPP63SPP 62SPP62SPP 300s300s

3.733.73 0.87(4.288x)0.87(4.288x) 0.99(3.777x)0.99(3.777x) 0.98(3.824x)0.98(3.824x) 0.67(5.569x)0.67(5.569x) 0.73(5.076x)0.73(5.076x) relMSErelMSE

124SPP124SPP 127SPP127SPP 111SPP111SPP 113SPP113SPP 133SPP133SPP 129SPP129SPP 300s300s

0.380.38 0.45(0.830x)0.45(0.830x) 0.39(0.969x)0.39(0.969x) 0.38(0.984x)0.38(0.984x) 0.24(1.574x)0.24(1.574x) 0.24(1.537x)0.24(1.537x) relMSErelMSE

98SPP98SPP 50SPP50SPP 44SPP44SPP 44SPP44SPP 47SPP47SPP 46SPP46SPP 120s120s

0.070.07 0.09(0.722x)0.09(0.722x) 0.08(0.857x)0.08(0.857x) 0.06(1.130x)0.06(1.130x) 0.10(0.654x)0.10(0.654x) 0.11(0.587x)0.11(0.587x) relMSErelMSE

166SPP166SPP 115SPP115SPP 130SPP130SPP 128SPP128SPP 65SPP65SPP 58SPP58SPP 120s120s

No Guiding Dir. Guiding
Dir. + VSPG

(NDS), Variance

Dir. + VSPG
(NDS+),
Variance

Dir. + VSPG
(Resampling),
Contribution

Dir. + VSPG
(Resampling),

Variance
Reference

Fig. 10. Comparison of unguided path tracing and directional path guiding to various variants of our VSP guiding framework, which are always combined

with directional path guiding. We show our VSGP framework described in Sec. 7 with di�erent distance sampling algorithms: VSPG (NDS) and VSPG (NDS+)

use algorithms based on Villemin et al. [2018] and VSPG (Resampling) uses the algorithm described in Sec. 5.4. For VSPG (Resampling), we show results

with both optimal VSP formulations separately (Sec. 5.1). Our error metric is relMSE [Rousselle et al. 2011] with a 0.1-percentile outlier removal, and the

displayed error value is multiplied by a factor of 10 for readability. The first four scenes are evaluated with 5-minute renderings and the la�er two with

2-minute renderings. Sec. 8.2 describes the used experimental setup in more detail and Sec. 8.3 discusses these results.
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VSP (Sec. 8.5) and end up with a higher error than the directional
path guiding baseline due to their overhead, which results in lower
SPP numbers.

Lantern. This scene is mainly illuminated by light sources inside
the paper lanterns placed behind the optically dense heterogeneous
smoke. An additional light source on the top dimly illuminates
the scene. For rays that pass through the volume and have their
�rst surface intersection on the bright lantern (orange inset), sur-
face contribution dominates, and our VSPG framework instructs
more surface scattering events to happen. Again, VSPG (NDS) and
VSPG (NDS+) cannot decrease the volume sampling probability,
and we only observe improvements from VSPG (Resampling). For
rays whose �rst surface intersection is the dark background (green
inset), all VSPG methods improve over the baselines as they can
all increase the VSP. This scene exempli�es the occasional need to
both increase and decrease of the VSP even within the same volume,
demonstrating the strength of automatic VSP framework.

Earth. This scene is illuminated by an environment map con-
taining a sun on the right side. We model the atmosphere above
the earth’s surface with an exponentially decaying optically thin
medium and the cloudscapes with an optically dense high-frequency
heterogeneous volume with an albedo of 1.0. Here, all VSPG meth-
ods, except for VSPG (NDS), increase the volume scatter probability
and are signi�cantly better in the rim (green inset), where rays
traverse through the optically thin atmosphere. In this scene, we
observe an overall increase in the error values for both our VSPG
(Resampling) approaches. This increase is related to the lower num-
bers of SPPs that can be evaluated at equal-time rendering due to a
signi�cant increase in average path lengths when using our algo-
rithm (see Tab. 1). This is because most of the background behind
the volume is dark, or even black, and therefore not contributing
to the estimate of Ĉ. Consequently, VSPG will almost always prefer
scattering inside the volume, even if its contribution to the sub-
sequent path to the �nal pixel estimate is low, therefore trapping
the path inside the volume. In contrast to VSPG (NDS) and VSPG
(NDS+), which often can not reach the target VSP (see Sec. 8.5),
VSPG (Resampling) usually reaches its VSP target, which, in this
case, results in a much longer average path length (e.g., VSPG (NDS):
2.16 and VSPG (Resampling): 5.41). A way to compensate for this
behavior is to use Russian roulette (RR) [Arvo 1986], starting at an
early path depth (e.g., 1) as demonstrated in Fig. 11. Enabling RR
leads to more similar average path lengths across the di�erent VSPG
methods (e.g., VSPG (NDS): 1.50 and VSPG (Resampling): 1.86) and,
therefore, to similar SPPs and error values. We explicitly disabled
RR in our evaluation since we observed that, in scenes with dense
low-albedo volumes (e.g., Lantern), it could become the primary
source of variance, negating any positive e�ect of directional or
VSP guiding. Implementing guided RR, as presented by Vorba et
al. [2016] and extended to volumes by Herholz et al. [2019], should
counter this source of ine�ciency by terminating paths that have a
low contribution to the estimate of Ĉ for the �nal pixel value.

0.07(0.911x)0.07(0.911x) 0.05(1.383x)0.05(1.383x) 0.05(1.362x)0.05(1.362x)

138SPP138SPP 157SPP157SPP 141SPP141SPP

Dir. Guiding
Dir. + VSPG (NDS+),

Variance

Dir. + VSPG
(Resampling),

Variance

Fig. 11. Equal-time (2min) comparison with Russian roule�e enabled: Le�

directional path guiding with delta tracking (avg. pl 1.42), center VSPG

(NDS+) (avg. pl 1.50), and right VSPG (Resampling) (avg. pl 1.86).

8.4 Primary and Secondary VSP Guiding

Our implementation (Sec. 7) of the VSPG framework allows guid-
ing the VSP for the primary rays and secondary rays. Depending
on the scene, the importance of both can vary signi�cantly. Espe-
cially in scenes where the volume is directly visible, and the volume
contribution is mainly single scattering (e.g., Jungle, Kitchen, or
Landscape), guiding the VSP of the camera rays has the biggest
in�uence on the overall variance reduction and guiding secondary
VSP decisions only leads to a minimal additional variance reduction.
An example of the dominant e�ect of primary ray VSP guiding is
shown for Kitchen in Fig. 12 (top). Secondary ray VSP guiding,
on the other hand, is important in situations where the volume is
either not directly visible (e.g., bounded by a translucent surface) or
when the dominant contribution comes from secondary scattering.
An example where primary ray VSP guiding has little e�ect and
secondary ray VSP guiding is dominant is shown for UnderWater

in Fig. 12 (bottom).

0.29 | 158SPP0.29 | 158SPP 0.22 | 132SPP0.22 | 132SPP 0.24 | 125SPP0.24 | 125SPP

0.87 | 127SPP0.87 | 127SPP 0.88 | 121SPP0.88 | 121SPP 0.73 | 129SPP0.73 | 129SPP
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Dir. Guiding Dir. + VSPG, Primary Dir. + VSPG, All

Fig. 12. Equal-time (5min) renderings showing primary-only and all ray VSP

guiding in di�erent scenes. Le� does not use any VSP guiding, whileCenter

guides the VSPs for primary ray, and Right for primary and secondary rays.

8.5 Resampling versus NDS

The NDS-based variants of VSPG can only increase the VSP as op-
posed to VSPG (Resampling) that allows to both increase or decrease
the VSP. This puts them at a fundamental disadvantage over the

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: September 2024.



14 • Kehan Xu, Sebastian Herholz, Marco Manzi, Marios Papas, and Markus Gross

No Guiding Directional Guiding (Dir.) Dir. + VSPG (NDS) Dir. + VSPG (NDS+) Dir. + VSPG (Resampling)

Scene (time) spp error
avg.
pl

avg.
dq

spp error
avg.
pl

avg.
dq

spp error
avg.
pl

avg.
dq

spp error
avg.
pl

avg.
dq

spp error
avg.
pl

avg.
dq

Jungle (5min) 40 1.10 6.41 0.27 37 1.10 6.42 0.24 36 | 36 0.65 | 0.71 6.32 | 6.36 0.36 | 0.32 37 | 37 0.28 | 0.32 6.11 | 6.20 0.36 | 0.32 39 | 38 0.21 | 0.24 5.76 | 5.94 0.55 | 0.45
Kitchen (5min) 206 0.56 7.68 0.09 158 0.29 6.74 0.09 135 | 136 0.22 | 0.23 6.83 | 6.83 0.12 | 0.12 138 | 137 0.20 | 0.20 6.82 | 6.83 0.12 | 0.11 128 | 125 0.23 | 0.24 6.75 | 6.80 0.17 | 0.16
Landscape (5min) 56 0.95 4.99 0.05 67 0.79 3.91 0.06 66 | 65 0.32 | 0.32 3.81 | 3.85 0.18 | 0.18 65 | 65 0.28 | 0.27 3.82 | 3.87 0.17 | 0.17 63 | 62 0.27 | 0.27 4.02 | 4.12 0.55 | 0.51
UnderWater (5min) 124 3.73 9.80 0.72 127 0.87 6.92 0.67 114 | 111 0.95 | 0.99 7.10 | 7.33 0.68 | 0.69 103 | 113 1.02 | 0.98 7.10 | 7.33 0.68 | 0.69 133 | 129 0.67 | 0.73 5.98 | 6.20 0.60 | 0.61
Lantern (2min) 98 0.38 4.73 1.52 50 0.45 6.17 1.19 43 | 44 0.39 | 0.39 6.23 | 6.22 1.23 | 1.22 44 | 44 0.38 | 0.38 6.26 | 6.24 1.22 | 1.21 47 | 46 0.24 | 0.24 5.03 | 5.13 3.02 | 2.94
Earth (2min) 166 0.07 2.18 4.59 115 0.09 2.07 4.77 136 | 130 0.07 | 0.08 2.12 | 2.12 4.78 | 4.78 131 | 128 0.06 | 0.06 2.16 | 2.16 4.64 | 4.64 65 | 58 0.10 | 0.11 4.73 | 5.41 8.45 | 8.60

Table 1. Rendering statistics for the di�erent algorithms for the scenes shown in Fig. 10. The stats show the number of samples achieved in equal time,

the resulting relMSE, the average path lengths, and the number of average volume density queries per path segment. For VSPG, we show the numbers for

contribution and variance-based VSP guiding, each separated with a "|". For each scene, the method with the lowest relMSE is highlighted in bold.

resampling method when decreasing the VSP is the optimal choice
(e.g., UnderWater and Lantern). In such a situation, they degrade
to delta tracking, whereas our resampling method is able to correctly
reduce the VSP.

x0 xv xs

NDS

×1
×3

x0 xv xs

Resampling

×1
×3

P ×1
surf

P ×3
surf

Psurf

Psurf Psurf

Psurf

Fig. 13. Sample distribution of a 1D function using NDS on the le� and our

resampling method on the right. The distribution from delta tracking is

shown in orange, with the volume density curve in gray. For both methods,

we show the resulting distribution when using 1× and 3× the majorant.

The stars on the right indicate the respective achieved surface sca�ering

probabilities.

Even when increasing the VSP is optimal, the NDS-based methods
have issues compared to our resampling method. Fig. 13 shows a
simple 1D experiment that compares the properties of the resulting
distance sampling distribution of both algorithms. NDS does not
fully reach the desired Č★

vol
, even when using the null-collision bias

scheme, while the resampling method precisely reaches it. Further,
NDS is negatively a�ected by loosening the majorant, as the dis-
crepancy between the resulting and desired VSP increases, while
our resampling method’s reached VSP remains optimal and even
bene�ts from loose majorants (Sec. 6). An example of how scaling
the majorant in�uences VSPG (NDS) and VSPG (Resampling) is
shown in Fig. 14. Note that VSPG (NDS+) could somewhat mitigate
this issue on primary rays, but cannot be applied on secondary rays.

8.6 Contribution vs. Variance-Based VSP Guiding

Even if variance-based VSP guiding is theoretically preferable, the
results, in terms of overall image error (i.e., relMSE), are often similar
to contribution-based VSP (see Fig. 10 and Tab. 1). We observed that
in most of our test scenes, the relative variance of ïĈsð and ïĈvð are
often similar, leading to similar variance-based and contribution-
based VSP values. These values signi�cantly di�er in cases where
one of the estimators has a much higher or lower variance (e.g.,
narrow light shafts or environmental background). At the same
time, the ratio between the surface and volume contributions and
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Fig. 14. Comparing the e�ect of scaling the majorant has in Kitchen using

VSPG with di�erent distance sampling strategies: Top NDS and bo�om

our resampling approach.
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Fig. 15. Equal-time (5min) comparison of VSPG using contribution (top)

or variance-based (bo�om) VSP guiding for di�erent distance sampling

methods: Le� NDS, center NDS+, and right our resampling approach.

variances needs to di�er signi�cantly. In our scenes, these cases
rarely occur, and if they do, they only a�ect local regions in the
image (e.g., Landscape: light shafts around the tree), barely a�ecting
the overall averaged image error (Fig. 15).

8.7 Computational and Memory Overhead

In the following, we analyze the computational and memory over-
head of our VSPG framework over the baselines.

We split the computational overhead into per-path segments and
additional training overhead. We measured an average per-path
segment overhead of 16.5% for directional guiding and 26.6% for
directional and VSP guiding compared to unguided path tracing. The
overhead of learning the additional VSP data for the 5D structure is
minimal; in average, the training time changed from 6.8% to 7.2% of
the total render time. Mainly due to the denoising overhead, training
the image-space VSP bu�er costs an additional 3.1%.3

3This overhead can be signi�cantly reduced when using a GPU for denoising.
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Dir. Guiding
Dir. + VSPG
(Resampling)

Scene (time) # caches size (MB) # caches size (MB)
Jungle (5min) 8752 28 8401 32
Kitchen (5min) 28272 91 27761 106
Landscape (5min) 12765 40 12677 48
UnderWater (5min) 37983 113 31998 122
Lantern (2min) 10542 34 8140 31
Earth (2min) 15012 49 16319 62

Table 2. Memory statistics for the 5D guiding structures for our test scenes

(Fig. 10) when only using directions guiding (le�) and when adding VSP

guiding (right). The statistics also include the number of guiding caches.

The additional memory required to store the VSP guiding infor-
mation is split between the image space VSP bu�er (Sec. 7.1) and
the 5D VSP guiding structure (Sec. 7.2). For the image space VSP
bu�er, we need to store 7 additional �oats per pixel; the surface
and volume contribution and the VSP value. Further, for the image-
space denoiser, we need to store additional auxiliary data per pixel,
such as un�ltered surface and volume contribution, albedo, normal,
and samples per pixel, which results in 13 additional �oats. This
results in 55MB for the image-space VSP bu�er and 102MB for the
denoising data for an image with a resolution of 1920x1080. For
the 5D VSP guiding structure, we measured a 15% size increase per
guiding cache compared to just storing the directional guiding data.
In Tab. 2, we show the memory consumption of the 5D guiding
structure with and without VSP guiding as well as the number of
guiding caches generated by the di�erent methods.

9 DISCUSSION AND FUTURE WORK

Density Query Costs. Since our resampling-based distance sam-
pling algorithm (Sec. 5.4) requires stepping through the entire vol-
ume, or at least to the �rst surface intersection inside the volume,
the number of density queries increases compared to standard delta
tracking or NDS (see Tab. 1). While we did not observe any negative
impact on e�ciency in our implementation and on our tested scenes,
we believe that this could change in other, more production-related
scenarios where individual density queries are more expensive (i.e.,
procedural volumes) or in scenes with extremely large and dense
volumes (e.g., cloudscapes). In this case, integrating some Russian
roulette-based termination approach, as proposed by Wrenninge
and Villemin [2020], might be required to reduce the overhead,
especially in cases with low target VSPs.

Product Distance Guiding. Our method currently focuses on only
guiding the VSP while keeping a transmittance-based PDF similar
to traditional distance strategies. Ideally, one would also consider
the distributions of the in-scattered or emitted volume radiance
and their product with transmittance. Wrenninge and Villemin’s
method [2020], which forms the basis of our resampling method,
also utilizes equiangular sampling [Kulla and Fajardo 2012] to sam-
ple according to the full product for single scattering contributions.
Therefore, it should be straightforward to combine VSP and dis-
tance guiding to leverage both advantages. Fig. 16 shows the results
of a naive integration of the product distance sampling into our
resampling framework, where at each candidate position, an ap-
proximation of the in-scattered radiance is queried from the guiding
structure and integrated into the resampling process. While the

0.710.71 0.56(1.272x)0.56(1.272x) 0.58(1.236x)0.58(1.236x) 0.30(2.374x)0.30(2.374x)

183.7s|1.02183.7s|1.02 189.4s|0.98189.4s|0.98 223.7s|11.08223.7s|11.08 294.9s|10.62294.9s|10.62

Resampling
Maj. x1

Product
Maj. x1

Resampling
Maj. x50

Product
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Fig. 16. Equal-sample comparison (64spp) of our resampling algorithm to

its extension to support product distance guiding using di�erent majorant

scaling factors (le�: x1 and right: x50) to increase the number of candidates.

narrow light shafts in the scene are a perfect use case for prod-
uct distance sampling, we only observe minor improvements to
standard resampling when the average number of event candidates
inside the volume is low (left). To see a clear improvement, we
need to increase the average number of event candidates inside
the volume from 1 to 10 by increasing the volume’s majorant by
50, which almost doubles the runtime (right). While the variance
reduction outweighs the cost increase in this example, this might
not be true in other less extreme scenarios, where product distance
sampling will have a much lower impact on variance reduction.
This is especially true in scenes with a more uniform in-scattered
radiance distribution, and the additional density and guiding cache
query overhead can quickly decrease e�ciency. This is a limitation
our naive integration shares with previous works like the ones of
Herholz et al. [2019] or Huang et al. [2021]. A potential avenue for
future work to overcome this limitation would be to extend the
VMM lobes with additional auxiliary data, such as a 1D representa-
tion of the in-scattered radiance distribution along the direction of
the lobe that is cheap to learn and cheap to evaluate.

Guiding other Binary Decisions. This work shows, surprisingly,
the e�ectiveness of guiding binary decisions that are usually only
considered implicitly as a byproduct of other sampling techniques,
such as transmittance-based distance sampling. The volume scat-
tering probability is not the only such decision that has been ne-
glected so far. The binary decision to re�ect or refract on dielectric
(potentially multi-layered) interfaces falls into the same category.
This decision is usually driven by the local Fresnel term only and
completely ignores the contribution and variance coming from the
re�ecting or refractive direction. We believe our current framework
could easily be extended to this and other use cases.

High-Quality Transmittance Estimates. Our resampling method
allows for using any unbiased transmittance estimate for the surface
candidate. This allows us, for instance, to replace the surface can-
didate’s ratio tracking estimator used in Sec. 5.3 with an unbiased,
potentially more expensive, high-quality transmittance estimator
(e.g., [Kettunen et al. 2021]). Early experiments show that this can
signi�cantly reduce variance for the primary rays when the surface
contribution dominates and the variance of the ratio tracking esti-
mator is high ( Fig. 17). However, a careful analysis is required to
trade o� the increased computational cost with the gain in quality
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Dir. Guiding Dir. + VSPG Dir. + VSPG + HQ Tr

0.66(1.343x) | 89.4s 0.35(2.521x) | 96.6s 0.27(3.325x) | 101.2s

Fig. 17. Equal-sample renderings (32spp) of the Lantern scene. In this inset,

the main contribution comes from the surface behind the volume and the

ratio tracking estimator has high variance. Le�: Directional path guiding

(using delta tracking). Center: VSPG using the ratio tracking estimator for

the surface candidate. Right: VSPG using the transmi�ance estimator from

Ke�unen et al. [2021] for the surface candidate.

to avoid negative impacts on the rendering e�ciency. We leave this
as future work.

10 CONCLUSION

We presented a practical and widely applicable unbiased method
for guiding the volume sampling probability, which signi�cantly
improves the rendering e�ciency of volumetric e�ects. Through
our extensive analysis and evaluation, we demonstrated that the
volume sampling probability is an essential contributor to variance
when rendering scenes with volumetric e�ects, and controlling this
probability with a systematic method can yield signi�cant e�ciency
improvements. Our method is lightweight, robust, and fully auto-
matic without any hyper-parameters, as demonstrated in various
volumetric scenarios across realistic scenes commonly used in pro-
duction. Moreover, our method is easy to integrate into existing
volumetric path tracing renderers, especially those that have already
adopted the data structures needed for directional path guiding.
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A RENDERING CHROMATIC MEDIA

Our resampling algorithm described in Sec. 5.4 can be extended to �t
into the null scattering path integral framework [Miller et al. 2019].
This allows to perform MIS between color channels for e�cient
rendering of chromatic media with spectrally varying coe�cients

Ă ®ę
t , Ă

®ę
ā , Ă

®ę .
For the resampling algorithm, we randomly select one color

component ę among the channels in ®ę and adopt this channel’s
volume properties to generate event candidates and compute re-
sampling weights. For the sample xğ drawn from this procedure,

the multi-channel throughput ïĐ ®ę
p (xğ )ð is the scalar throughput

ïĐę
p (xğ )ð (Eq. 28) from the resampling algorithm multiplied by a

channel-wise correction factor
Ĝ ®ę (xğ )

Ħ ®ę (xğ )
.

This correction factor is computed in the sameway as the through-
put in the null scattering path integral framework, based on the
selected real scattering vertex xğ and all the preceding null scat-

tering vertices x1, ..., xğ−1. The numerator Ĝ ®ę (xğ ) corresponds to
sampling the integrand of the null scattering extension of the VRE
[Galtier et al. 2013] according to x1, ..., xğ :

Ĝ ®ę (xğ ) = Đr
®ę
(x0, xğ )Ă

®ę
t (xğ )

©«
ğ−1∏
Ġ=1

Ă ®ę
ā (xĠ )

ª®¬
, (37)

with Đr
®ę
(x0, xğ ) = exp(−Ă ®ę | |x0 − xğ | |) being the majorant transmit-

tance. The probability of sampling this path with color channel ę
is:

Ħę (xğ ) = Đr
ę
(x0, xğ )Ă

ę
t (xğ )

©«
ğ−1∏
Ġ=1

Ăęā (xĠ )
ª®¬
, (38)

and being able to analytically compute Ħę (xğ ) for every color chan-
nel ę ∈ ®ę = {ę1, ..., ęĊ } allows MIS between all channels:

Ħ ®ę (xğ ) =
1

Ċ

Ċ∑
Ġ=1

Ħę Ġ (xğ ). (39)

The Earth scene in Fig. 10 shows the application of our resam-
pling method on rendering a chromatic medium.

B MODIFIED NULL-COLLISION PROBABILITY BIAS
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Fig. 18. We show the e�ect of null-collision probability bias (NCPB) on nor-

malized density sampling (NDS). Le� shows NDS without NCPB. Center

and right show NDS with NCPB based on Eq. 40 and Eq. 41, respectively.

In Sec 3.3 of Villemin et al. [2018], the authors purpose to modify
the real collision probability Čreal to be Č ′

real
:

Č ′
real

= Č
1
Ā ′

real
with Ā ′ = 1 + (1 − ïĐr (x0, xĩ )ð)(Ā − 1),

where ïĐr (x0, xĩ )ð is the transmittance estimation of the whole ray,
and the paper sets Ā = 2 for all test cases. This results in:

Ā ′ = 2 − ïĐr (x0, xĩ )ð, (40)

yielding a value in the range [1, 2].
In thin media, the goal is to increase the volume scattering prob-

ability. Therefore we would like Č ′
real

to be as large as possible. For

a given Čreal ∈ (0, 1), Č ′
real

becomes larger when the exponent 1
Ā ′ is

smaller, which occurs when Ā is larger.
However,Đr (x0, xĩ ) is high for thin volumes, resulting in Ā ′ being

close to 1, causing only a minor change from Čreal to Č ′
real

. We
believe the authors intended for Ā ′ to be high when Đr (x0, xĩ ) is
high. Therefore, we modify the equation to:

Ā ′ = 1 + ïĐr (x0, xĩ )ð, (41)

which still keeps Ā ′ ∈ [1, 2], but increases Č ′
real

further from Čreal in
thin media.
We compare the e�ects of the two Ā ′ implementations (Eq. 40

and Eq. 41) in Fig. 18. Using our formula results in achieving a Čvol
closer to the target Č★

vol
and rendering with less error in both scenes.

This experiment supports our observation.
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